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Stochastic mechanics of mixed states 
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Received 13 May 1983 

Abstract. Nelson’s stochastic interpretation of quantum mechanics is extended from the 
case of pure states to that of mixed states. It is shown that a pure probabilistic formalism, 
which applies the Newton-Nelson Law to the initial position and velocity distributions, 
does not reproduce the time evolution predicted by quantum mechanics. In order to  
recover the latter, a new notion must be introduced, that of pure quantum states, over 
which the mixture has to be decomposed, and which then satisfy the Newton-Nelson Law 
independently. 

1. Introduction 

In a previous paper Nelson (1966) has shown how to recover the Schrodinger equation, 
which determines the quantum evolution of a particle, by describing the movement 
of the latter with a stochastic process of a Brownian type, and by imposing the Newton 
law: F = ma, with F the force, m the mass and a the acceleration. Such a description 
has several advantages. 

(i) The  Schrodinger equation follows naturally from the Newton law, once fluctu- 
ations around the classical trajectories of the particle are taken into account. 

(ii) The quantum fluctuations of the particle position acquire an ordinary statistical 
nature, and can be interpreted as resulting from a universal agitation induced by the 
vacuum, (proportional to l / m ) .  

(iii) The wavefunction Y ( x )  (which describes a linear evolution of the state of the 
particle) is related in a natural way to  the probability p ( x )  of finding the particle at a 
given point x in space: more precisely, the relation p ( x )  = IY(x)\’ follows directly from 
the probabilistic description and the dynamics. 

This stochastic representation of the quantum mechanics of a particle thus seems to  
provide a natural framework for dealing simultaneously with fluctuations which are 
of quantum origin and fluctuations which are of pure statistical origin, like those 
resulting from an insufficient knowledge of the observed system. This extension of 
the stochastic representation of quantum mechanics, from the case of pure states t o  
that of mixed states, is studied in this paper. In 0 2, we apply quantum mechanics to 
the density matrix of the mixture and display the equations which describe the correct 
time evolution of the probability density. In 0 3, following Nelson, we develop the 
stochastic process representation and introduce the additional hypotheses which allow 
one to  recover the correct evolution of the mixture. 
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2. Evolution of the density matrix 

In the framework of quantum mechanics, all the available information on a statistical 
mixture is contained in its density matrix p* (Landau and Lifschitz 1977). Let p*(x, x') 
be the coefficients of this matrix in a basis of eigenvectors for the position. The 
probability density associated with point x is given by the diagonal element, (p*(x,  x )  = 
p ( x ) ) ,  while the non-diagonal ones provide phase coherence and allow for interference. 
According to quantum mechanics, the time evolution of the density matrix is linear 
and determined by the Schrodinger equation, which couples the two kinds of elements 

ih ap*/at = [I?, p*] 

where fi is the Hamiltonian of the system. Before coming to a stochastic interpretation, 
and in order to exhibit the probabilistic features of this evolution, we shall extract the 
equations which the diagonal elements of the density matrix satisfy. For this purpose, 
let us introduce the convenient parametrisation 

p*(x, x ' )  = exp(r(x, x ' )  +is(x, x ' ) ) .  

The hermiticity of p* implies the symmetries 

r ( x ,  x ' )  = r ( x ' ,  x )  S ( X ,  x ' )  = - $ ( X I ,  x ) .  

Considering the movement of a particle in an external potential V ( x ) ,  the Schrodinger 
equation gives 

ih ap*/at = [ - ( h 2 / 2 m ) v 2 +  V ( x )  + ( i i 2 / 2 m ) v " -  V(x')]p* 

with V = a / a x ,  V' = a / a x ' ,  which becomes, after decomposition on the symmetric (real) 
and antisymmetric (imaginary) parts 

ar h h - = -- ( V Z - V f 2 ) s - - - ( V r  V s - V ' r  V ' S )  
at  2 m  m 

as h h 1 - = - ( v ' - V ' ' ) r + - ( ( V r ) * -  (vs)'-  (V'r) '+ (V ' s ) ' )  --( V ( x )  - ~ ( x ' ) ) .  
a t  2 m  2m h 

In order to exploit these equations on the diagonal elements of 6, it appears convenient 
to take successive derivatives, and thus to introduce an independent set of derivatives 
of p*, taken at x = x'. Such a basis is, for instance, given by 

and their derivatives with respect to x 

v"'u("'(x) = ( h / 2 m ) ( ~  +v')"'(v -V') '"r(x,  x')(,=,~ 

V"'U(")(X) = ( h / 2 m ) ( V  + V ' ) " ' ( V - V ' ) 2 n - 1 S ( X ,  X ' ) l x = , ' .  

One thus obtains from ( 1 )  the set of equations which determine the time evolution of 
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the diagonal elements of the density matrixt 

For instance, introducing 

h 
m 

v ( x )  = u ( l ) ( x )  =- V s ( x ,  x')lx=x', 

the first two equations can be written 

a p / a t + v ( p u )  = o  dv /a t  + U V U  - [ U  + ( h / 2 m ) V ] u '  = -V V / m .  (3) 

Before coming to the stochastic description, let us make a few remarks. Equations 
( 2 )  represent the time evolution of the probability density p ( x ) ,  as is required by 
quantum mechanics. In general, the latter involves, besides the velocity field u ( x ) ,  an 
infinity of auxiliary fields u ( " ) ( x )  and u ( " ) ( x ) ,  which correspond to higher derivatives 
of the density matrix. Such a system closes on a finite number of equations and fields 
for particular cases only. Such is the case of pure states. Indeed, r ( x ,  x') and s(x, x ' )  
then take the following forms 

r ( x ,  x') = R ( x ) + R ( x ' )  

U = ( h / m ) V R  U = ( h / m ) V S  u ' = V u  

s(x, x') = S(x) - S(x')  

so that the derivatives become dependent 

(V + V')*"r (x ,  x') = (V -v ' ) '"~(x,  x')  

(V + v')2'"-"(v - V ' )  s( x, x')  = (V - V ' p -  ' s( x ,  x ' )  

a p / a t + v ( p u )  = o  a u / a t + u V u - [ u + ( h / 2 m ) ] V u = - V V / m .  (3') 

u ( ' ) ( x )  = ( h / 2 m ) v 2 "  In p ( x )  

U ( " ) ( X )  = v2'"-"u(x) 

and system ( 2 )  reduces to only two equations 

One then recognises in equations (3') ,  for pure states, the two equations which describe 
the Newtonian mechanics for a stochastic process (Nelson 1966), respectively the 
kinematic equation of continuity, and the dynamic equation which can be rewritten 
a = F / m ,  where a is Nelson's acceleration which one can define for the stochastic 
process (see the appendix for a review of the definitions). 

Coming back to the general case of the statistical mixture, one also recognises in 
the first two equations (3), the expression of Newtonian mechanics, but this time with 
a corrected acceleration. Denoting 

S u ( x )  = V u ( x ) -  u ' ( x )  = 2(h/m)VV' In p*(x, ~ ' ) l ~ = ~ ,  

t To be precise, the nth pair of equations requires that p* and V be differentiable 2 n  + 2 and 2 n  - 1 times 
respectively. But, as will be seen in the following, the first two equations appear to be sufficient for the 
argument. 
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the dynamic equation can be rewritten 

a u / a t  + U V u  -[ U + ( h / Z m ) V ] V u  +[U + ( h / 2 m ) V ] S u  = -V V/ m. 

In general, this correction will require Nelson’s scheme to be modified in consequence. 
To be convinced that this correction cannot be cancelled, one can just consider the 
simplest case of a mixture of two different states (denoted by 1 and 2). The density 
matrix is then the sum of the two density matrices describing the pure states 

A x ,  x ’ )  = C , P ^ l ( X ,  x t )  + C , p ^ , ( X ,  x ‘ )  

f i l , 2  = exp( rl .z + is1.2) 

U ~ , ~ ( X )  = ( h / m ) V r l , 2 ( x ,  x ’ ) / , = , *  

U = ClPlUl/P+C2P2U2/P 

6u = 2(m/h)(c ,c2pIp~/p2)[ (u ,  - u ~ I ’ + ( u ~  - UJ’I. 

C] + c2 = 1. 

Pl . , (X)  = fi1.2(x, X ’ ) l , = , ,  

Denoting 

u l . A x )  = ( h / m ) V s l , 2 ( x ,  x ’ ) / , = , ~ .  

One easily computes 

U = ClPl  U I l P  + C Z P 2 V Z / P  

Let us also remark that, quite generally, the three fields (U, U ,  6u)  determine the energy 
of the mixture 

E =Tr  I$= dxdx’  8 ( x - x ’ ) [ ( h 2 / 2 m ) V V ’ +  V ( x ) ) b ( x , x ’ )  

= 1 d x { $ m [ u 2 ( x ) +  v Z ( x ) + ( h / 2 m ) S u ( x ) ] +  V ( x ) } p ( x ) .  

I 
3. Stochastic interpretation 

Being hermitian, the density matrix of the mixture can always be decomposed as a 
weighted sum, (with coefficients C2), of pure state density matrices, (b l ) .  Then, using 
Nelson’s representation, we shall describe the mixture by the stochastic process which 
one obtains by mixing with probabilities C,, those which describe the pure states. Let 
us consider for simplicity a mixture of two states, which will be denoted by 1 and 2 .  
The position of the particle is represented by a random variable x.  Let p l ( x )  and p z ( x )  
be the probability densities for the random variable to take the value x in states 1 and 
2 respectively. In the mixture the particle can be in states 1 and 2 with probabilities 
C,  and C2 and hence the probability density p ( x )  for the random variable to take the 
value x is given by p ( x )  = Clpl (x)  + C 2 p z ( x ) .  

Clpl(C2p2) is the joint probability density of being in state 1 and at x (in 2 and 
at x ) .  C , p l / p ( C 2 p 2 / p )  is the probability density of being in state 1 ( 2 ) ,  with the 
condition of being at x. These properties can be deduced from the following hypothesis. 

(a) The set of sample paths associated with the mixture is the union of the sets of 
sample paths associated with the states 1 and 2, and the corresponding measure is the 
weighted sum, with coefficients C, and C2, of the measures associated with states 1 
and 2 .  

It is then easy to recover for the mixture, the mean values which define the forward 
and backward velocities and which one needs for developing Nelson’s cinematics 
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(Nelson's scheme is summarised in the appendix): 

where ( )x(f, is the mean value, conditionally in x ( t ) ,  or  else 

where U =$(b+b*)  and U = t ( b - b * ) .  These relations allow one to  recover the two 
continuity equations associated with the mixture 

a p / a t + V ( p u )  = O  U = ( i i / 2 m ) V p / p .  

Let us furthermore make the following hypothesis. 
(b)  Each state evolves independently and according to the Newton-Nelson law: 

this means that the Newton-Nelson law ( F  = ma, with a Nelson's acceleration) is 
statistically satisfied in each, as taken separately, of the two sets of sample paths 
associated with states 1 and 2 

a h F 
at  2m m 
- u v , + u ,  V U , - U ,  vu , - -v2u ,= -  

a h F 
a t  2m m 
- u2+  U 2  P v z -  U 2  Vu2-- v2u2 =- 

(see the  appendix for a justification of this acceleration). Summing these two equations 
with respective weights C I p I / p  and C 2 p 2 / p ,  and introducing the convenient change 
of variables 

one derives the following equation 

a h F - u + u V v - u V u - - v ~ u +  U + - v  su=-  
a t  2m ( z " m )  m 

Thus, with the hypotheses (a) and (b) on the  set of sample paths, the mixture satisfies 
a modified Newton-Nelson law, the correction in the acceleration taking the form 
[U + ( h / 2 m ) V ] s u  and giving back the time evolution of quantum mechanics (equation 
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(3)). Let us remark that this last Newton law implies the conservation of the following 
energy 

E = / d x [ A u + v V v -  dt a t  ( V U - ~ U ) - -  m ‘I mpv. 

With this stochastic interpretation of the quantum mechanics equations, a few 
remarks are in order. First of all, one cannot simply apply the Newton-Nelson law 
to the associated stochastic process and recover, in a pure probabilistic framework, 
the time evolution of quantum mechanics. Indeed, if one specifies at initial time, in 
quite a classical way, the position and velocity distributions (the fields p ( x )  and u ( x ) ) ,  
and then one applies to them Nelson’s evolution (equations (3’)), these fields do not 
evolve according to quantum mechanics in the general case. In fact, to recover the 
latter, one must impose the modified equations (2), and this simultaneously requires 
that an infinite number of fields are known at initial time. Or else one must know the 
total density matrix at initial time, which amounts to knowing which states, and with 
which probabilities, build the initial mixture. Thus certain states, which are called pure 
states, are distinguished by quantum mechanics, and have the characteristics of evolving 
according to Nelson’s generalisation of the Newton law. The stochastic interpretation 
does not avoid this but, on the contrary, must be completed with th,e introduction of 
this new notion, and then with a more precise description of the initial conditions, 
which must contain an explicit decomposition over pure states. 

5. Conclusion 

When extended to the description of mixed states, the stochastic representation still 
shows the advantageous features, (presented in the introduction), which bring quantum 
mechanics closer to the geometric and spatial background of classical mechanics. In 
particular, it allows one to give a precise statistical meaning to’the paths and to  the 
measure, which appear in Feynman integrals (Zambrini and Yasue 1982). It also 
provides a physical meaning to the fluctuations of the Markov Euclidian fields, with 
which the quantum field theories are constructed (Guerra 1981). 

However, and already at the pure state level, there are characteristic features of 
quantum mechanics which are preserved by the stochastic representation, and which 
go beyond the standard framework of classical mechanics. In particular, the transition 
probability which determines the evolution of the random variable of the stochastic 
process is not determined by the dynamics only, but depends on the state itself. This 
feature leads to properties which affect the usual intuition with regard to diffusion 
processes (Mielnik and Tengstrand 1980), and tends to confer a physical existence to 
the wavefunction describing the quantum state. The random variable can be considered 
to be guided by the wavefunction (de Broglie 1956, Bohm 1952). The time evolution 
of the random variable is then more easily seen to depend crucially on the boundary 
conditions, with their non-local character (like, for instance, the aperture or closure 
of one of the slits in a double slit system). Moreover, it appears impossible to separate 
the evolution of the random variable from that of the boundary conditions (Wootters 
and Zurek 1979). The non-locality and the spatial rigidity of states, which characterise 
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quantum mechanics, are also exhibited in a situation suggested by Einstein eta1 (1935), 
and confirmed by experiments (Aspect et a1 1982). We have seen how the notion of 
a quantum state also shows up in the stochastic treatment of a statistical mixture, 
through the necessity of a global decomposition of the set of sample paths into disjoint 
and priviledged subsets, which separately satisfy the Newton law. Such a decomposition 
is again non-local and raises, in a more acute way, the problem of the geometric and 
statistical characterisation of the quantum trajectories. 

Acknowledgments 

We are grateful to J S Bell for his comments on the early draft of the paper. We are 
also indebted to S Caser, J M Maillard and S Reynaud for enlightning and fruitful 
discussions. 

Appendix 

We briefly review the definitions which allow the derivation of the Schrodinger equation 
from the Newton law. One assumes that the random variable x( t )  follows a locally 
Gaussian Markov process: the particle being at x at instant t ,  its probability of being 
at x +Ax at instant ? + A t  is given by a transition probability P ( x ,  t ,  x +Ax,  ? + A t )  
satisfying 

AxP(x, t, x+Ax, ? + A t )  dAx = b ( x )  A t + o ( A t )  

where k / m  is the diffusion constant of the process and the other moments are of 
higher order in At.  The probability density p ( x ,  t )  then evolves according to the 
equation 

p(x+Ax, ? + A t )  = P(x, t, x+Ax, t + A t ) p ( x ,  t )  dx I 
whose development up to order A t  leads to the Focker-Planck equation (see for 
instance, Cox and Miller 1980) 

i i p /d t  + C( bp)  - ( k / 2 m ) v 2 p  = o 
The same process can also be viewed another way and described by its other transition 
probability: the particle being at x at instant t, P*(x ,  t, x - Ax, t - A t )  is its probability 
of coming from point x - Ax at instant t - At. The latter is in fact determined, once 
the transition probability P and the probability density p are known. For that purpose, 
let us consider p ( x ,  t ,  x‘ ,  t ’ )  the joint probability for the particle of being at x at instant 
t ,  and at x’ at instant t ‘ .  This probability can be obtained in two ways 

p(x, t. x ’ ,  t ’ )  = p(x, t ) P ( x ,  t, x’, t ’ )  = p(x’ ,  t’)P*(x‘, t’, x, t )  
which gives 

P*(x, t,x-Ax, t -At)=[p(x-Ax,  t - A t ) / p ( x ,  t)]P(x-Ax, t-At,x, t ) .  
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P* also describes a locally Gaussian Markov process, as its moments satisfy 

( A x ) : ( , ) =  J A x P * ( x ,  t,  x - A x ,  ? - A t )  d A x =  b * ( x )  A t + o ( A t )  

k 
m ( A ~ ' ) : ( ~ i = j  A ~ ~ P * ( x , t , x - A x , t - A t ) d A x = - A t + o ( A t )  

with b*(x)  = b ( x ) - 2 z i ( x ) ,  f i ( x )  = ( k / 2 m ) ( V p / p ) ( x ) ,  the other moments being of 
higher order in At. The backward Focker-Planck equation is deduced (see Cox and 
Miller 1980) 

ap /a t+V(b*p)  +( k / 2 m ) V 2 p  = O  

which, together with the first one, leads to the two kinematic equations 

ap /a t+v(Up)  = o  V [ z i p - ( k / 2 m ) V p ] = O  
with 

u = t ( b + b * )  and zi=$(b-b*) .  

From the moments of the transition probabilities, one can deduce the evolution of 
any function f of the random variable x 

which define two different time derivatives, forward D, and backward D*, or else 

t (  D+ D*) = a/a t+  uv i ( D - D * ) = c V + ( k / 2 m ) V 2 .  

These then provide two different velocities (forward b ( x )  = Dx, and backward 
b * ( x )  = D * x ) ,  and then four different accelerations: DDx, D D * x ,  D*Dx, D * D * x .  In 
fact, only three of them are independent, as can be seen from the relation which the 
continuity equation implies (from now on U will be assumed to derive from a potential: 
rot U = 0) 

i [DD-D*D*]x  = [ i ( D + D * ) $ ( D - D " ) + $ ( D - D * ) i ( D + D * ) ] x  

a k k l a  V p  
at 2 m  2 m  ( p a t  p 

= -- U + v ( 0 U )  + - v * U = - v - - p + - U + 0 U 

The most general acceleration then takes the form 

{ f ( D  + D*)' + ;( D - D*)[&h ( D  - D*) + i p ( D  + D*)]}x 

= d v / a t +  U V U  +[ f iV+  ( k / 2 m ) V z ] ( A i i  +pu) .  

If one requires not to break the time reversal invariance, ( D e  D*),  which the formalism 
has preserved up to now, the general acceleration reduces to 

[ f ( D  + D*)'+$h(D - D * ) ' ] x  

= a (  1 + A ) ( D D + D * D * ) x + $ ( ~  - A)(DD*+ D*D)X 

=av /a t+  U V v + h [ i i V + ( k / 2 m ) V 2 ] h .  
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Let us consider the general Newton law 

[a(D+D*)’+aA(D-D*)’ ]x  = F / m  

together with the kinematic equation 
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(4) 

[+( D + D*)t( D - D*) + $( D - D*)$(D + D*)]X = 0. 

This system of equations can then be transformed in the following way. 

between the fields 
First, linear combinations of these two equations allow one to raise the coupling 

[$( D + D*) f idh(D - D*)I2x = F /  m 

a [( a/ a t )  + ( U  * Jhii)V f Jh( k /  2m)V2] (  U f &fi) = F /  m. 

Then, introducing the following change of functions 

9 * ( x )  = e x p [ R ( x ) * ( / A I / A ) ” ’ S ( x )  

the two equations linearise 

with ( k / m ) V R  = i i , J m ( k / m ) V S =  U 

* v ‘ i k ( a / a t ) V + , i (  k 2 / 2 m ) V 2 9 *  = - V 9 *  with -V V = F. 

O n e  then remarks that the probability p ( x )  density is directly linked to  the functions 
9 * ( x )  which describe the linear evolution of the system 

p ( x )  = p‘”’ = 9 + ( X ) V ( X ) .  

Let us also remark that the Newton law (equation (4)) can be deduced from the  
conservation of the following energy (Nelson 1979) 

E = ( ~ ~ { [ ~ ( D + D * ) x ] ~ - A [ ~ ( D - D * ) x ] ~ } +  V ( X ) )  

= J [ ~ m ( v 2 ( x ) - A h i i 2 ( ~ j ) +  V ( x ) ] p ( x )  dx. 

If one  further requires that this energy be positive definite ( A  < O ) ,  then, identifying 
the product of the diffusion parameter k and of the acceleration parameter fi with 
the universal Planck constant A ,  one is led to the Schrodinger equation. The functions 
W ( X )  and W ( x )  are  then conjugate of each other. O n  the other hand, the two other 
choices A > 0, and A = 0, lead to ordinary diffusion and to classical mechanics respec- 
tively. One  then remarks that, to the sameq_uantum state ( the  same wavefunction 
“ ‘ ( x ) ,  or  else, the same fields p ( x ) ,  u ( x )  = J l A l U ( x ) ,  and ~ ( x ) ) ,  corresponds a whole 
family of different processes (different transitions probabilities, o r  else, different 
velocities b ( x ) ,  b*(x) ,  and diffusion constant k_L Hence, the size of the fluctuations 
remains arbitrary, the acceleration parameter 41 A I matching in consequence. Nelson’s 
convention corresponds to IA I = 1, and thus k = A .  
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